Abundances of the elements: Meteoritic and solar

EDWARD ANDERS
Enrico Fermi Institute and Department of Chemistry, University of Chicago, Chicago, IL 60637-1433, U.S.A.

and

NICOLAS GREVESSE
Institut d’Astrophysique, Université de Liège, B-4200 Ougrèe-Liège, Belgium

(Received July 14, 1988; accepted in revised form November 2, 1988)

Abstract—New abundance tables have been compiled for Cl chondrites and the solar photosphere and corona, based on a critical review of the literature to mid-1988. The meteorite data are generally accurate to ±5-10%. Significant discrepancies between Sun and meteorites occur only for Fe, Mn, Ge, Pb, and W; other well-determined elements agree to ±5% on the average. There is no evidence for group fractionations in Cl chondrites of cosmochemically similar elements (refractories, siderophiles, volatiles, etc.), but a selective fractionation of Fe cannot be ruled out. Abundances of odd-A nuclides between A = 65 and 209 show a generally smooth trend, with elemental abundances conforming to the slope defined by isotopic abundances. Significant irregularities occur in the Nd-Sm-Eu region, however, suggesting that the abundance curve is dependably smooth only down to the ~20% level.

1. INTRODUCTION

This paper is a new edition of the abundance compilations of Anders and Ebihara (1982; hereafter AE) for meteorites and Grevesse (1984a,b) for the solar photosphere. Although meteoritic values have changed little, many photospheric values, including those for C, N, O, have improved greatly in recent years, mainly due to the use of highly accurate transition probabilities, and thus permit a critical comparison of solar and meteoritic abundances. In addition to better data, our new abundance tables contain many small improvements, such as better coupling of solar and meteoritic scales, better isotopic abundances, etc.

Section 2 of this paper presents the new abundance tables. Sections 3 and 4 review the elements individually for meteorites and the solar photosphere, showing how the values were obtained and discussing uncertainties. Section 5 presents values for the solar corona, from spectroscopy as well as measurements of solar wind and solar energetic particles (SEP). Section 6 reviews data for noble gases. Section 7 compares photospheric, coronal, meteoritic, and cometary abundances, as well as trends in s-process and r-process nuclides.

2. ABUNDANCE OF THE ELEMENTS AND NUCLIDES

2.1. Solar-system abundances

Abundances of the elements (formerly known as cosmic abundances) are best estimates for the entire solar system. They are based on meteorites except for H, C, N, O and noble gases, where solar and other astronomical data were used. Solar abundances are best estimates for the Sun. They are based mainly on photospheric data, augmented as needed by solar wind, SEP, or other astronomical (but not meteoritic) data.

1 A few definitions. Solar-system abundances (formerly known as cosmic abundances) are best estimates for the entire solar system. They are based on meteorites except for H, C, N, O and noble gases, where solar and other astronomical data were used. Solar abundances are best estimates for the Sun. They are based mainly on photospheric data, augmented as needed by solar wind, SEP, or other astronomical (but not meteoritic) data.
Column 4 gives the log of the ratio Sun/meteorites. The ratio itself is plotted in Fig. 2 against atomic number.

The conversion factor from the solar abundance scale (log \(N_H = 12.00 \)) to the meteoritic scale (\(N_H = 10^{\delta} \)) has been derived by comparing the solar-meteoritic ratio, \(R = \log \text{(sol/met)} \), for all elements. This comparison shows that \(R \) for well-determined elements clusters between 1.52 and 1.58, with a maximum around 1.55. We have adopted \(R = 1.555 \pm 0.020 \), the mean for 12 elements (Na, Mg, Si, Ca, V, Cr, Co, Ni, Zr, Nb, Mo, and Mn).

This ratio is very close to previous estimates by Meyer (1979), Cameron (1982), and AE: 1.57 \pm 0.16, 1.57/6, and 1.566 \pm 0.025. The nominal uncertainty in coupling the two scales now is only \(\pm 5\% \).

2.3. Solar-system abundances: Nuclides

Abundances of individual nuclides are given in Table 3. For radioactive and radiogenic nuclides their abundances 4.55 AE ago are given in italics, based on half-lives from Holdén (1985a,b; and priv. commun.), except for K\(^{40} \) where the value recommended in geochronology (1.2505 \(\times 10^{\delta} \)) Steiger and Jäger, 1977) was used.

For isotopic compositions, we generally used terrestrial rather than solar values, except for H and noble gases. Solar values are hard to measure accurately by spectroscopy, as the isotopic shifts of atomic lines are small compared to the width of photospheric lines. Only for C and O can accurate isotopic ratios be obtained, using the infrared vibration-rotation bands of CO. These values confirm the terrestrial ratios in Table 3.

Isotopic abundances generally are the terrestrial "representative isotopic compositions" recommended by IUPAC (Holdén et al., 1964, and Holdén, priv. commun.). In cases where the recommended composition gave the abundance of a rare isotope to only one significant figure, we either took that value from the "best measurement from a single natural source" (\(\text{Se}, \text{Os} \), or used the entire "best" analysis, when it appeared that the recommended composition was merely a rounded-off-version of the best analysis (Zn, La, Dy). We also used the latest analyses for \(\text{Ga} \) (Machlani et al., 1980), \(\text{Sn} \) (Rosman et al., 1984), \(\text{Sb} \) (DeLaeter and Hosie, 1988), \(\text{Te} \) (Smith and DeLaeter, 1986), and \(\text{Hg} \) (Zadnik et al., 1989).

The IUPAC compositions are intended to represent "the chemicals and/or materials most commonly encountered in the laboratory, not necessarily the most abundant natural material" (Holdén et al., 1984). This makes a slight difference for light elements (Li, B, C, O, Ne, Na, Mg, Al).
Table 2. Abundances in the Solar Photoosphere
(\(N_H = 2.00 \times 10^{10}\))

<table>
<thead>
<tr>
<th>Element</th>
<th>Photosphere</th>
<th>Meteorite</th>
<th>Phot. - Meteor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>12.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He</td>
<td>[10.99 ±0.05]</td>
<td>[10.99]</td>
<td></td>
</tr>
<tr>
<td>Ne</td>
<td>1.16 ±0.1</td>
<td>3.31 ±0.4</td>
<td>-2.15</td>
</tr>
<tr>
<td>Ar</td>
<td>1.15 ±0.10</td>
<td>1.42 ±0.4</td>
<td>-0.27</td>
</tr>
<tr>
<td>B</td>
<td>(2.6 ±0.3)</td>
<td>2.88 ±0.4</td>
<td>(-0.28)</td>
</tr>
<tr>
<td>C</td>
<td>8.56 ±0.04</td>
<td>[8.56]</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>8.10 ±0.04</td>
<td>[8.03]</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>8.93 ±0.033</td>
<td>(8.93)</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>4.56 ±0.3</td>
<td>4.48 ±0.06</td>
<td>+0.08</td>
</tr>
<tr>
<td>Ne</td>
<td>[8.99 ±0.10]</td>
<td>[8.99 ±0.10]</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>6.33 ±0.03</td>
<td>6.31 ±0.03</td>
<td>+0.02</td>
</tr>
<tr>
<td>Mg</td>
<td>7.58 ±0.05</td>
<td>7.58 ±0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>Al</td>
<td>6.47 ±0.06</td>
<td>6.48 ±0.02</td>
<td>-0.01</td>
</tr>
<tr>
<td>Si</td>
<td>5.75 ±0.05</td>
<td>5.55 ±0.02</td>
<td>+0.00</td>
</tr>
<tr>
<td>P</td>
<td>5.45 ±0.04</td>
<td>5.57 ±0.04</td>
<td>-0.12</td>
</tr>
<tr>
<td>S</td>
<td>7.21 ±0.20</td>
<td>7.19 ±0.06</td>
<td>+0.23</td>
</tr>
<tr>
<td>Cl</td>
<td>5.3 ±0.5</td>
<td>5.27 ±0.06</td>
<td>+0.23</td>
</tr>
<tr>
<td>Ar</td>
<td>[6.56 ±0.10]</td>
<td>[6.56 ±0.10]</td>
<td></td>
</tr>
<tr>
<td>Kr</td>
<td>3.12 ±0.12</td>
<td>3.13 ±0.03</td>
<td>+0.25</td>
</tr>
<tr>
<td>Sr</td>
<td>6.36 ±0.02</td>
<td>6.34 ±0.03</td>
<td>+0.02</td>
</tr>
<tr>
<td>Y</td>
<td>3.10 ±0.09</td>
<td>3.09 ±0.04</td>
<td>+0.01</td>
</tr>
<tr>
<td>Zr</td>
<td>4.90 ±0.02</td>
<td>4.92 ±0.02</td>
<td>+0.02</td>
</tr>
<tr>
<td>Nb</td>
<td>4.00 ±0.02</td>
<td>4.02 ±0.02</td>
<td>-0.02</td>
</tr>
<tr>
<td>Cr</td>
<td>5.67 ±0.03</td>
<td>5.68 ±0.03</td>
<td>-0.01</td>
</tr>
<tr>
<td>Mn</td>
<td>1.19 ±0.04</td>
<td>1.19 ±0.04</td>
<td>0.14</td>
</tr>
<tr>
<td>Fe</td>
<td>7.67 ±0.033</td>
<td>7.51 ±0.01</td>
<td>+0.16</td>
</tr>
<tr>
<td>Co</td>
<td>4.92 ±0.04</td>
<td>4.91 ±0.03</td>
<td>+0.01</td>
</tr>
<tr>
<td>Ni</td>
<td>6.25 ±0.04</td>
<td>6.25 ±0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>Cu</td>
<td>4.21 ±0.04</td>
<td>4.27 ±0.03</td>
<td>-0.06</td>
</tr>
<tr>
<td>Zn</td>
<td>4.60 ±0.08</td>
<td>4.65 ±0.02</td>
<td>+0.03</td>
</tr>
<tr>
<td>Ga</td>
<td>2.98 ±0.10</td>
<td>3.13 ±0.03</td>
<td>-0.25</td>
</tr>
<tr>
<td>Ge</td>
<td>3.41 ±0.14</td>
<td>3.63 ±0.04</td>
<td>+0.22</td>
</tr>
<tr>
<td>As</td>
<td>-</td>
<td>2.37 ±0.05</td>
<td>-</td>
</tr>
<tr>
<td>Se</td>
<td>-</td>
<td>3.35 ±0.03</td>
<td>-</td>
</tr>
<tr>
<td>Br</td>
<td>-</td>
<td>2.63 ±0.08</td>
<td>-</td>
</tr>
<tr>
<td>Kr</td>
<td>-</td>
<td>4.23 ±0.07</td>
<td>-</td>
</tr>
<tr>
<td>Rb</td>
<td>2.60 ±0.15</td>
<td>2.40 ±0.03</td>
<td>+0.20</td>
</tr>
<tr>
<td>Sr</td>
<td>7.00 ±0.06</td>
<td>7.08 ±0.03</td>
<td>+0.02</td>
</tr>
<tr>
<td>Y</td>
<td>5.74 ±0.03</td>
<td>5.77 ±0.03</td>
<td>+0.02</td>
</tr>
<tr>
<td>Zr</td>
<td>2.68 ±0.03</td>
<td>2.61 ±0.03</td>
<td>-0.01</td>
</tr>
<tr>
<td>Nb</td>
<td>1.42 ±0.02</td>
<td>1.40 ±0.02</td>
<td>-0.02</td>
</tr>
<tr>
<td>Mo</td>
<td>1.92 ±0.05</td>
<td>1.96 ±0.02</td>
<td>-0.04</td>
</tr>
<tr>
<td>Ru</td>
<td>1.84 ±0.07</td>
<td>1.82 ±0.02</td>
<td>+0.02</td>
</tr>
<tr>
<td>Rh</td>
<td>1.13 ±0.02</td>
<td>1.10 ±0.03</td>
<td>+0.03</td>
</tr>
<tr>
<td>Pd</td>
<td>1.69 ±0.04</td>
<td>1.70 ±0.03</td>
<td>-0.01</td>
</tr>
<tr>
<td>Ag</td>
<td>0.94 ±0.25</td>
<td>1.24 ±0.04</td>
<td>(-0.30)</td>
</tr>
<tr>
<td>Cd</td>
<td>1.12 ±0.03</td>
<td>1.17 ±0.01</td>
<td>+0.06</td>
</tr>
<tr>
<td>In</td>
<td>1.66 ±0.15</td>
<td>1.82 ±0.02</td>
<td>+0.14</td>
</tr>
<tr>
<td>Sn</td>
<td>2.60 ±0.3</td>
<td>2.14 ±0.04</td>
<td>-0.14</td>
</tr>
<tr>
<td>Sb</td>
<td>1.00 ±0.03</td>
<td>1.04 ±0.03</td>
<td>+0.04</td>
</tr>
<tr>
<td>Te</td>
<td>1.54 ±0.1</td>
<td>2.24 ±0.04</td>
<td>-</td>
</tr>
<tr>
<td>I</td>
<td>1.51 ±0.08</td>
<td>1.51 ±0.08</td>
<td>-</td>
</tr>
<tr>
<td>Xe</td>
<td>2.23 ±0.08</td>
<td>2.23 ±0.08</td>
<td>-</td>
</tr>
<tr>
<td>Cs</td>
<td>1.12 ±0.02</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ba</td>
<td>2.63 ±0.08</td>
<td>2.21 ±0.03</td>
<td>-0.06</td>
</tr>
<tr>
<td>Ra</td>
<td>1.12 ±0.02</td>
<td>1.20 ±0.02</td>
<td>+0.03</td>
</tr>
<tr>
<td>53Sr</td>
<td>0.55 ±0.20</td>
<td>1.61 ±0.01</td>
<td>-0.06</td>
</tr>
<tr>
<td>53Cr</td>
<td>0.71 ±0.08</td>
<td>0.78 ±0.01</td>
<td>-0.07</td>
</tr>
<tr>
<td>54Fe</td>
<td>1.50 ±0.06</td>
<td>1.47 ±0.01</td>
<td>+0.03</td>
</tr>
<tr>
<td>54Sm</td>
<td>1.00 ±0.08</td>
<td>0.97 ±0.01</td>
<td>-0.03</td>
</tr>
<tr>
<td>55Mn</td>
<td>0.51 ±0.08</td>
<td>0.54 ±0.01</td>
<td>+0.03</td>
</tr>
<tr>
<td>56Fe</td>
<td>1.12 ±0.03</td>
<td>1.07 ±0.01</td>
<td>-0.05</td>
</tr>
<tr>
<td>57Co</td>
<td>0.11 ±0.03</td>
<td>0.33 ±0.01</td>
<td>(-0.43)</td>
</tr>
<tr>
<td>58Ni</td>
<td>1.1 ±0.15</td>
<td>1.15 ±0.01</td>
<td>+0.03</td>
</tr>
<tr>
<td>59Cu</td>
<td>0.26 ±0.16</td>
<td>0.56 ±0.01</td>
<td>(-0.24)</td>
</tr>
<tr>
<td>60Zn</td>
<td>0.93 ±0.06</td>
<td>0.95 ±0.01</td>
<td>-0.02</td>
</tr>
<tr>
<td>61Ga</td>
<td>0.00 ±0.15</td>
<td>0.13 ±0.01</td>
<td>(-0.13)</td>
</tr>
<tr>
<td>62Ge</td>
<td>1.06 ±0.15</td>
<td>1.09 ±0.03</td>
<td>+0.03</td>
</tr>
<tr>
<td>63Se</td>
<td>0.76 ±0.30</td>
<td>0.12 ±0.01</td>
<td>(+0.64)</td>
</tr>
<tr>
<td>64Kr</td>
<td>0.88 ±0.08</td>
<td>0.73 ±0.01</td>
<td>+0.15</td>
</tr>
<tr>
<td>65Xe</td>
<td>0.13 ±0.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>66Kr</td>
<td>(1.11 ±0.15)</td>
<td>0.08 ±0.02</td>
<td>(+0.03)</td>
</tr>
<tr>
<td>67Br</td>
<td>0.27 ±0.04</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>68Kr</td>
<td>1.45 ±0.10</td>
<td>1.38 ±0.03</td>
<td>+0.07</td>
</tr>
<tr>
<td>71Rf</td>
<td>1.35 ±0.10</td>
<td>1.37 ±0.03</td>
<td>-0.02</td>
</tr>
<tr>
<td>76Ru</td>
<td>1.8 ±0.3</td>
<td>1.68 ±0.03</td>
<td>+0.12</td>
</tr>
<tr>
<td>79Au</td>
<td>10.1 ±0.15</td>
<td>8.93 ±0.03</td>
<td>(+0.18)</td>
</tr>
<tr>
<td>80Rf</td>
<td>1.00 ±0.05</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>81Pt</td>
<td>0.92 ±0.04</td>
<td>0.82 ±0.04</td>
<td>(+0.08)</td>
</tr>
<tr>
<td>82Bi</td>
<td>1.85 ±0.05</td>
<td>2.05 ±0.03</td>
<td>-0.20</td>
</tr>
<tr>
<td>83Bi</td>
<td>1.71 ±0.03</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>89Rn</td>
<td>0.12 ±0.00</td>
<td>0.08 ±0.02</td>
<td>+0.04</td>
</tr>
<tr>
<td>92U</td>
<td>< 0.41</td>
<td>< 0.49 ±0.04</td>
<td></td>
</tr>
</tbody>
</table>

Values in parentheses are uncertain.

Values in brackets are based on solar or other astronomical data.

See text (Sec. 4.3).
Table 3. Abundance of the Nuclides (Atoms/10^18 S)

<table>
<thead>
<tr>
<th>Element, A</th>
<th>Atorn Percent</th>
<th>Process*</th>
<th>Abund.†</th>
<th>Element, A</th>
<th>Atorn Percent</th>
<th>Process*</th>
<th>Abund.†</th>
<th>Element, A</th>
<th>Atorn Percent</th>
<th>Process*</th>
<th>Abund.†</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 H</td>
<td>99.996</td>
<td></td>
<td></td>
<td>30 Zn</td>
<td>48.63</td>
<td>Ex,E</td>
<td>613</td>
<td>51 Si</td>
<td>57.362</td>
<td>Rs</td>
<td>0.177</td>
</tr>
<tr>
<td>2 He</td>
<td>0.004</td>
<td>U</td>
<td></td>
<td>64 Fe</td>
<td>27.00</td>
<td></td>
<td>372</td>
<td>123 Sn</td>
<td>42.638</td>
<td>R</td>
<td>0.132</td>
</tr>
<tr>
<td>3 Li</td>
<td>6.75</td>
<td>X</td>
<td>4.28</td>
<td>67 Ge</td>
<td>16.75</td>
<td>E,Ex</td>
<td>28</td>
<td>125 As</td>
<td>1.099</td>
<td>P</td>
<td>0.043</td>
</tr>
<tr>
<td>4 Be</td>
<td>9.10</td>
<td>X</td>
<td>0.73</td>
<td>31 Ga</td>
<td>9.08</td>
<td>S,e,E</td>
<td>227</td>
<td>127 Zn</td>
<td>1.100</td>
<td>R</td>
<td>0.062</td>
</tr>
<tr>
<td>5 B</td>
<td>19.9</td>
<td>R</td>
<td>0.226</td>
<td>72 Rb</td>
<td>7.70</td>
<td>S,r,E</td>
<td>256</td>
<td>128 Ni</td>
<td>1.231</td>
<td>S</td>
<td>1.526</td>
</tr>
<tr>
<td>6 C</td>
<td>12.98</td>
<td>H</td>
<td>9.990</td>
<td>73 Sr</td>
<td>8.00</td>
<td>O</td>
<td>35</td>
<td>130 Ag</td>
<td>1.037</td>
<td>S</td>
<td>1.644</td>
</tr>
<tr>
<td>7 N</td>
<td>90.24</td>
<td>H</td>
<td>3.124</td>
<td>74 Zr</td>
<td>5.75</td>
<td>S</td>
<td>11</td>
<td>132 Ba</td>
<td>1.044</td>
<td>S</td>
<td>0.854</td>
</tr>
<tr>
<td>8 O</td>
<td>60.76</td>
<td>He</td>
<td>5.770</td>
<td>75 Au</td>
<td>3.36</td>
<td>S</td>
<td>10</td>
<td>134 K</td>
<td>1.053</td>
<td>S</td>
<td>0.749</td>
</tr>
<tr>
<td>9 F</td>
<td>100</td>
<td>N</td>
<td>84.4</td>
<td>76 Kr</td>
<td>6.60</td>
<td>S</td>
<td>9</td>
<td>136 Xe</td>
<td>1.063</td>
<td>S</td>
<td>0.907</td>
</tr>
<tr>
<td>10 Ne</td>
<td>92.99</td>
<td>C</td>
<td>3.204</td>
<td>77 Rn</td>
<td>6.30</td>
<td>S</td>
<td>8</td>
<td>138 La</td>
<td>1.073</td>
<td>S</td>
<td>0.854</td>
</tr>
<tr>
<td>11 Na</td>
<td>90.24</td>
<td>He</td>
<td>3.124</td>
<td>78 Sr</td>
<td>5.75</td>
<td>S</td>
<td>7</td>
<td>139 Ce</td>
<td>1.084</td>
<td>S</td>
<td>0.749</td>
</tr>
<tr>
<td>12 Mg</td>
<td>79.89</td>
<td>Ne</td>
<td>8.494</td>
<td>79 Yt</td>
<td>3.43</td>
<td>S</td>
<td>6</td>
<td>140 Nd</td>
<td>1.094</td>
<td>S</td>
<td>0.854</td>
</tr>
<tr>
<td>13 Al</td>
<td>100</td>
<td>Ne</td>
<td>8.494</td>
<td>80 La</td>
<td>3.00</td>
<td></td>
<td></td>
<td>141 Sm</td>
<td>1.105</td>
<td>S</td>
<td>0.854</td>
</tr>
<tr>
<td>14 Si</td>
<td>92.26</td>
<td>O</td>
<td>9.227</td>
<td>81 K</td>
<td>16.40</td>
<td>S</td>
<td>5</td>
<td>142 Pr</td>
<td>1.116</td>
<td>S</td>
<td>0.854</td>
</tr>
<tr>
<td>15 P</td>
<td>90.24</td>
<td>O</td>
<td>3.100</td>
<td>82 Sb</td>
<td>16.50</td>
<td>S</td>
<td>4</td>
<td>143 Nd</td>
<td>1.126</td>
<td>S</td>
<td>0.854</td>
</tr>
<tr>
<td>16 S</td>
<td>11.00</td>
<td>H</td>
<td>9.990</td>
<td>83 Br</td>
<td>6.60</td>
<td>S</td>
<td>3</td>
<td>144 P</td>
<td>1.136</td>
<td>S</td>
<td>0.854</td>
</tr>
<tr>
<td>17 Cl</td>
<td>75.77</td>
<td>Cl</td>
<td>5.770</td>
<td>84 Kr</td>
<td>3.43</td>
<td>S</td>
<td>2</td>
<td>145 I</td>
<td>1.146</td>
<td>S</td>
<td>0.854</td>
</tr>
<tr>
<td>18 Ar</td>
<td>84.4</td>
<td>O</td>
<td>8.494</td>
<td>85 Xe</td>
<td>3.00</td>
<td></td>
<td></td>
<td>146 Cs</td>
<td>1.156</td>
<td>S</td>
<td>0.854</td>
</tr>
<tr>
<td>19 K</td>
<td>93.2581</td>
<td></td>
<td></td>
<td>86 Rb</td>
<td>16.40</td>
<td>S</td>
<td>1</td>
<td>147 Ba</td>
<td>1.166</td>
<td>S</td>
<td>0.854</td>
</tr>
<tr>
<td>20 Ca</td>
<td>95.02</td>
<td>O</td>
<td>4.094</td>
<td>87 Br</td>
<td>16.50</td>
<td>S</td>
<td>0</td>
<td>148 La</td>
<td>1.176</td>
<td>S</td>
<td>0.854</td>
</tr>
<tr>
<td>21 Sc</td>
<td>90.24</td>
<td>He</td>
<td>3.124</td>
<td>88 Kr</td>
<td>3.43</td>
<td>S</td>
<td>0</td>
<td>149 Ce</td>
<td>1.186</td>
<td>S</td>
<td>0.854</td>
</tr>
<tr>
<td>22 Ti</td>
<td>86.24</td>
<td>O</td>
<td>5.600</td>
<td>89 Xe</td>
<td>3.00</td>
<td></td>
<td></td>
<td>150 Nd</td>
<td>1.196</td>
<td>S</td>
<td>0.854</td>
</tr>
<tr>
<td>23 V</td>
<td>90.24</td>
<td>O</td>
<td>3.100</td>
<td>90 Br</td>
<td>16.50</td>
<td>S</td>
<td>0</td>
<td>151 Sm</td>
<td>1.206</td>
<td>S</td>
<td>0.854</td>
</tr>
<tr>
<td>24 Cr</td>
<td>93.2581</td>
<td></td>
<td></td>
<td>91 Kr</td>
<td>3.43</td>
<td>S</td>
<td>0</td>
<td>152 Nd</td>
<td>1.216</td>
<td>S</td>
<td>0.854</td>
</tr>
<tr>
<td>25 Mn</td>
<td>90.24</td>
<td>O</td>
<td>3.124</td>
<td>92 Xe</td>
<td>3.00</td>
<td></td>
<td></td>
<td>153 Sm</td>
<td>1.226</td>
<td>S</td>
<td>0.854</td>
</tr>
<tr>
<td>26 Fe</td>
<td>54.8</td>
<td>E</td>
<td>5.224</td>
<td>93 Br</td>
<td>16.50</td>
<td>S</td>
<td>0</td>
<td>154 Nd</td>
<td>1.236</td>
<td>S</td>
<td>0.854</td>
</tr>
<tr>
<td>27 Co</td>
<td>59.13</td>
<td>E</td>
<td>2.253</td>
<td>94 Kr</td>
<td>3.43</td>
<td>S</td>
<td>0</td>
<td>155 Sm</td>
<td>1.246</td>
<td>S</td>
<td>0.854</td>
</tr>
<tr>
<td>28 Ni</td>
<td>68.67</td>
<td>E</td>
<td>3.370</td>
<td>95 Xe</td>
<td>3.00</td>
<td></td>
<td></td>
<td>156 Nd</td>
<td>1.256</td>
<td>S</td>
<td>0.854</td>
</tr>
<tr>
<td>29 Cu</td>
<td>69.17</td>
<td>Ex,C</td>
<td>5.681</td>
<td>96 Br</td>
<td>16.50</td>
<td>S</td>
<td>0</td>
<td>157 Sm</td>
<td>1.266</td>
<td>S</td>
<td>0.854</td>
</tr>
<tr>
<td>30 Zn</td>
<td>48.63</td>
<td>Ex,E</td>
<td>613</td>
<td>97 Kr</td>
<td>3.43</td>
<td>S</td>
<td>0</td>
<td>158 Nd</td>
<td>1.276</td>
<td>S</td>
<td>0.854</td>
</tr>
</tbody>
</table>

* Assignment to radioactive processes are from Cameron (1962), Schaeffer (private communication, 1982), Waterer et al. (1984), Weyland and Hofmann (1980, 1985), and Bent and Podosek (1977). Processes are listed in the order of importance, with non-processes (X-X-x) for 1- and 2-s processes shown in lower case. See above references for details.

U = cosmological nucleosynthesis
H = hydrogen burning
N = neutron capture
H = helium burning
C = carbon burning
O = oxygen burning
Ne = neon burning
F = fast neutron capture
E = electron capture
S = s-process
R = r-process
S,R = s-r-process
X = nucleosynthesis

† Normalized value refers to abundances of 4.5 x 10^18 S.
long-term averages in lunar soils; +3 ± 2% for solar wind, -33 ± 15% for SEP.

The Ar36/Ar40 ratio is virtually the same in solar wind and in the Earth’s atmosphere, which makes the choice easy. For Ar40, we have used the lowest Ar40/Ar36 ratio observed in meteorites, (2.9 ± 1.7) × 10$^{-4}$ in an 1850°C fraction from the Dyalpur ureilite (GOBEL et al., 1978), which leads to Ar40/Ar36 = 25 ± 14. Part or all of this Ar40 could be radiogenic, but since the observed amount is only 5 ± 3 units from the expected radiogenic Ar40 decay, the observed value is remarkably close to the range predicted by s-process calculations, (24 ± 6) for un−

3.1. Lithium (K5). The 7 NAA analyses of M14 were not used as they showed up to two-fold differences between fragments and bulk samples. If included they would have lowered Li from 57.1 to 53.0.

Beryllium (SI, V2). The atomic absorption values of V2 are only 15% lower than the (y, 2n) data of Q1, and 10% lower than the colorimetric values of SI, which were previously rejected. Although the data of Q1 should be superior since they were based on large samples and a highly specific nuclear method, the differences were small, and we have therefore retained all three sets. None of the samples were C1’s, and the data were therefore corrected by fractionation factors for refractories (K1); 1.11 for C2 and C30, 1.33 for C3V (see Sec. 7.3, however).

Boron (C11). The latest measurements by Curtis and Gladney (C11) give an abundance of 21.1 ± 2 for Orgueil, close to the indirect value of 24 ± 7 of AE. The latter value had been derived from the data of C0 (mainly ordinary chondrites) by applying corrections for chondrule content, on the assumption that boron is moderately volatile and hence depleted in chondrules. The data for C2, 3 chondrites when similarly corrected show even better agreement with the new Orgueil value:

8 C2, 3 chondrites (C11): 18.5 ± 3.3
21 C2, 3 chondrites (C11, C0): 20.1 ± 3.4.

There is little to choose among these various estimates, but following C11, we adopt the new Orgueil value.

3.2. F, Na, Mg, Al, Si, P, S, Cl

Sodium (G13). Magnesium (G14). Aluminum (G14). The scatter of the data of K1 was reduced by using their Al/Mg ratios rather than Al concentrations and converting them to Al/Si ratios via the Mg/Si ratio from Table 1.

Silicon (M2). The 1912 analysis of Tonk by Christie (M2) has been reinstated, as it looks pretty good except for low Mg, Cr and high alkalics. The mean Si content for the 4 C1 chondrites then becomes 10.38 ± 0.4% (2% of Si in Tonk is reduced by 10% by the K1). This has no effect on the Si = 10% normalization or the Si value (10.64%) for a “nominal” C1 chondrite, which is used to convert atomic abundances back to weight abundances in Table 1.

3.3. K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni

Potassium (B6). Calcium. The Ca and Al values from Table 1 give a Ca/Al (weight) ratio of 1.07, slightly below the empirical mean of 1.4% shown by most meteorite classes (AHRENS, 1970). However, we did not adjust our Ca value, as the difference is less than the uncertainty in the empirical mean, especially since the most recent data (K1) suggest slight variations in mean Ca/Al among C1–C3 chondrites, in addition to variations within the C1, C2 classes attributable to hydrothermal transport. It is not clear whether the mean C1 chondrite value is preferable to a grand average of all chondrites classes, but for consistency we have chosen the former. The difference is less than 2% in any case.

Scandium (G14, J3). Cobalt (R8) Nickel (R8, T1).

3.4. Cu, Zn, Ga, Ge, As, Se, Br, Rh, Sr, Y, Zr, Nb, Mo

Copper (R8). Zinc. The revised value uses individual analyses rather than means from C8 and K1.

Germanium. The revised value uses individual analyses rather than means from K1.
Arenic (R8). Two low values from C7 and H1 were reinstated, as they were consistent with the new values by R8.

Selenium. Data by K1 are systematically high by ~20% compared to the remaining analyses (which agree within ±3%) and have therefore been omitted.

Rubidium (B6).

Strontium (B6, G2).

Yttrium (J3). The new average of 4.64 ± 0.28 agrees exactly with the old, but the error is smaller. Three indirect estimates give similar values. 4.79 ± 0.33 from Y/Yr of 8 C-chondrites (J3), 5.16 ± 0.47 from Zr/Y of C-chondrites (J3), or 4.52 ± 0.12 from the Y/REE ratio of 14 chondrites (Davies, 1988, in preparation).

Zirconium. Following J3, we deleted the data of G7, which gave a low Zr/Hf ratio and were 23% low compared to the mean of the remaining 7 analyses, 11.4 ± 0.7. This value also gives reasonable Zr/Y, Zr/Yr, and Zr/Ho ratios, agreeing with those for C2 and C3 chondrites (J3). It is somewhat disturbing, though, that C2, C3O, and C3V chondrites (K3, J3) give a mean Zr abundance virtually identical to the C1 value, 11.7 ± 0.7 vs. 11.4 ± 0.7, although K1 have shown that these three classes are generally enriched in refractories by factors of 1.11, 1.11 and 1.33. Either these fractionations do not apply to Zr or some of the Zr data are wrong. More high-quality analyses are obviously needed for Zr and Hf.

Niobium (J3). The first measurements on a C1 chondrite (J3) agree very well with the earlier, indirect estimate of AE, 0.698 vs. 0.71, and with the mean value from eight C1–C3 analyses: 0.706 ± 0.038 (J3). Again, J3 find no systematic difference between C1's and other C-chondrite classes.

Molybdenum (R8). The new value (R8) is based on a slight (~1%) upward revision of the original data of F3.

3.5. Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Cs, Ba

Palladium (L0). Seven new isotope dilution values by L0 have left the mean unchanged.

Silver (L6). The six isotope dilution values by L6 are only slightly lower than the 11 RNAA values used by AE, but have better precision: 0.486 ± 0.014 vs. 0.529 ± 0.050. We have therefore used only the data of L6.

Cadmium (L0).

Tin. Beer et al. (1988) have measured the neutron capture cross-section of Sn116, and have argued from s-process systematics that the Sn abundance ought to be 2.95 ± 0.23 rather than 3.82 ± 0.36. It does not seem possible to lower the meteoritic value, which is based on 11 RNAA and ID measurements from four laboratories for three meteorites. The mean of the two isotope dilution values is close to the overall mean: 3.77 ± 0.17 vs. 3.82 ± 0.36 (as usual, errors are standard deviations of the population, not the mean).

Antimony (R8). The highly accurate metal extraction method of R8 gave 120 and 123 ppb for Orgueil, which agrees with the 1973–1975 Chicago RNAA values (K4, T1) but is markedly lower than many other measurements. We therefore rejected 13 Orgueil and Ivuna values that exceeded 155 ppb (an isotope dilution value by K3 chosen as a cutoff). For Alais, all four values were systematically high, and we therefore rejected only the highest value (209 ppb).

Tellurium (L0). The mean of nine isotope dilution values is only slightly lower than the mean of all 17 analyses: 4.69 ± 0.16 vs. 4.81 ± 0.47.

Iodine. The indirect value for this element, based on ratios to F, Br, In, and Cd, is only negligibly affected by the change in Cd abundance.

Cesium (L6). The new values left the mean unchanged.

Barium (B6). The values of D2 and D5 were deleted, as they appeared to be not independent measurements but unreported data from the literature.

3.6. Rare earth elements. Hf, Ta, W, Re, Os, Ir, Pt, Au

REE (B6, J3). We have used the pattern derived by Davies (1988, in preparation), which was obtained in the following manner:

a. Relative abundances of polyisotopic REE were found by averaging four isotope dilution analyses for C1's (B6, N2).

b. For each of 19 C1 chondrite patterns in the literature, the mean REE enrichment factor was calculated relative to the reference pattern from (a), rejecting outlying enrichment factors for individual REE.

c. The grand mean of these mean enrichment factors was then used to normalize the absolute level of the reference pattern. (The 1σ error of the grand mean was ±1.22%, but the individual means ranged from 0.924 to 1.729 the grand mean.)

d. Abundances of monoisotopic REE were found by normalizing literature analyses of C1 and other chondrites to the abundances of polyisotopic REE from (b), rejecting fractionated or irregular patterns. The concentrations of Sc, Y, Pr, Tb, Ho, and Tm in each meteorite were then normalized to a standard C1 by dividing them by the mean enrichment factor for polyisotopic REE in that meteorite. These C1-normalized abundances were then averaged.

The REE data in Table 1 were renormalized to Si = 10.64% from Davies' 10.57%. Errors include both the error in the pattern and that in absolute abundance. Because of this unconventional procedure, the number of analyses used for the atomic abundances in Table 1 requires some explanation. For polyisotopic REE, four C1 analyses were used for the relative abundances and 219 C1 analyses for absolute abundances. For monoisotopic REE, 20 to 23 analyses—including chondrites of other classes—were used. In contrast, the (weight) abundances for Orgueil in Table 1 were obtained by straight averaging, as usual.

Hafnium (B6). The analyses of K3 and S4 were rejected, as they were some 15% higher than the isotope dilution analyses of B6 (106.1, 107.1 ppb). Even the latter values gave an atomic Lu/Hf ratio slightly below the value inferred by B6 from isotope systematics: 0.233 vs. 0.245. As we did not feel justified in raising the REE, we lowered Hf from 0.159 to a compromise value of 0.154, which raised the Lu/Hf ratio to 0.238 while giving a Zr/Hf (weight) ratio of 37.9.

Tantalum (J3). The first measurements on a C1 chondrite (J3) gave an abundance of 0.0207, only 10% lower than the indirect value of AE. (D3 had previously given a C1 value of 17 ppb, corresponding to an abundance of 0.248, but this seems to be an unreported value by E6 for the Murray C2 chondrite.) Another indirect value can be obtained from the Sc/Ta ratio of 428 ± 3 in C1 and C2 chondrites (w/w; J3). With the Sc abundance from Table 1, it yields a Ta abundance of 0.0198, only 4% lower than the direct value.

Tungsten (R8). The mean of W2 and two new measurements by R8 agree well with the indirect value of AE, which was based on an average of W2 and the C2–C3 chondrite mean (corrected for fractionation): 0.133 vs. 0.137.

Rhenum (R8).

Osmium (R8). The new values of R8 are near the low end of the range of previous measurements, and we have therefore rejected the highest four values used by AE (from C9 and E3).

The Orgueil value in Table 1 of AE should have been given as 504 ppb, not 699 ppb. (The latter number is the abundance on the Si = 10.0 scale, 10.6.)

Platinum (R8). In light of the new data, the Ivuna value of C9 was rejected (the Alais value had already been rejected by AE).

Gold (R8).

3.7. Hg, Pb, Bi, Th, U

Mercury (B7). Mercury in C1 chondrites is too variable for a reliable abundance determination, and therefore has been customarily estimated by interpolation. A better approach is to use s-process systematics; specifically, the near-constancy of Sn. Beer and Macklin (1985) have obtained a value of 0.34 ± 0.04 in this manner, using measured cross-sections and the abundances of neighboring elements from AE. As these abundances have hardly changed (Table 1), the above value should still be valid.

Lead. The value of Au remains unchanged. It agrees within error limits with a theoretical estimate by Beer and Macklin (1985): 3.15 ± 0.25 vs. 2.85 ± 0.19. However, this estimate assumes no s-process branching at T1204; if such branching occurs, then the lead abundance will be smaller (Beer, 1988). See Sec. 7.2 for further discussion.

4. REVIEW OF SOLAR PHOTOSPHERIC ABUNDANCES

In this section, abundances are expressed on a logarithmic scale relative to log H = 12. Some of the elements in Table 2 have remained unchanged since the last critical compila-
4.1. H, C, N, O

These major volatiles are incompletely condensed in meteorites, and thus the Sun is the only source of their solar-system abundances (Lambert, 1978; Sauval et al., 1984). Furthermore, since a fractionation process occurs in the chromosphere that depletes these elements in the corona (Sec. 5 and 7.1), only the photospheric results are reliable. For various reasons summarized by Grevesse et al. (1987), the most accurate values come from a careful analysis of vibration-rotation and pure rotation lines of molecules such as CO, CII, OII, NII that are present in the solar infrared spectrum (Sauval et al., 1988, in preparation), as obtained from space by the ATMOS-3L experiment (Farmer et al., 1987). These new results (Tables 1 and 2) differ somewhat, for C and N, from those previously adopted by Grevesse (1984a).

4.2. Li

Lithium (Steenbock and Holweger, 1984).

4.3. Sc, Ti, V, Cr, Mn, Fe

Iron. Updating the discussion by Grevesse (1984a), we note that the earlier results of Blackwell et al. (1984) have been confirmed by Blackwell et al. (1986), through study of faint FeII lines of rather low excitation (≈ 2 eV) with accurately known oscillator strengths. This result, based on local thermodynamic equilibrium (LTE), is listed in Table 2. Actually, slight non-LTE effects in excitation have been discovered empirically in FeII (Blackwell et al., 1984), TiII, CrII (Blackwell et al., 1987), and VI (Béumont et al., 1988), all through the use of very high accuracy transition probabilities. These effects are taken into account in the corresponding abundances in Table 2.

A full non-LTE treatment of FeII by Steenbock (1985; see also Holweger, 1988) shows that LTE-based abundances from FeII should be increased slightly (by ≈ 0.05 dex) to allow for deviations from LTE. This would raise the abundance of Fe from 7.67 to 7.72, still farther from the meteoritic value of 7.51. A substantially lower value, 7.56 ± 0.08, was obtained by O'Mara (priv. commun.), using transition probabilities of high-excitation FeI lines (Milford et al., 1988), which should be less sensitive than low excitation lines to temperature and non-LTE effects.

Similarly, results from lines of FeII (by far the dominant species) should not be affected by slight departures from LTE. Although accurate transition probabilities for good solar FeII lines are very rarely available, promising efforts to measure them have been made by Whaling (1985), Moity (1988, priv. commun.), and Pauls (1988). The latter author obtained g-values for 3 FeII lines in the near infrared, which lead to $4_{13} = 7.63$. But a higher value, 7.68 ± 0.05, was obtained in a reanalysis of ten forbidden FeII lines (N. Grevesse, unpublished work). Thus the question of the solar-iron abundance remains in a state of flux, but there is hope that full agreement will soon be reached by joint efforts of atomic physicists and astronomers.

4.4. Ge, Pb

Germanium (Grevesse and Meyer, 1985).

Lead (Grevesse and Meyer, 1985).

4.5. Y, Zr, Nb

Yttrium, Zirconium. The results from Grevesse (1984a), based on data by Hannaford et al. (1982) and Béumont et al. (1981), have been recalculated on the basis of new ionization potentials (Zr: Hackett et al., 1986), with inclusion of a previously overlooked value for Y (Garton et al., 1973).

Nobium (Hannaford et al., 1985).

5. SOLAR CORONA, SOLAR WIND, SOLAR ENERGETIC PARTICLES (SEP)

Excellent reviews are available on the problem deriving abundances in the solar corona, either by spectroscopy or by measurement of particles originating in the solar corona, such as solar wind and SEP (Meyer, 1985a,b; Geiss, 1982; Geiss and Bochsler, 1985; Breneman and Stone, 1985; Bochsler, 1987). The most recent values are given in Table 4.

Spectroscopic measurements, summarized by Meyer (1985b), are available for H, He, C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Fe, Ni, and Ni. All converge well, but their uncertainties are rather large (≈ 0.70 dex or even up to 0.48 dex for some elements such as He or C).

Noci et al. (1987) reconsidered the abundances of C, N, O, Ne, Mg, Si and S in different regions of the solar transition zone (a coronal hole, a quiet region, and an active region). They concluded that the coronal abundances do not differ from photospheric abundances by an amount larger than the errors, as is expected, because in difference the coronal emission line does not involve any transition to a higher energy state.
more than their rather large uncertainties (0.40 dex), except for O, which is underabundant. Solar wind (SW) values are available for H, He, C, N, O, Ne, Si, Ar, and Fe; their uncertainties are on the order of 0.05–0.20 dex (BOCHSLER, 1987). Within their error limits, the SW data agree with spectroscopic coronal values, though the match for log He/H is hardly significant in view of the large errors (SW = −1.40 ± 0.10, corona −1.00 ± 0.48). The data for SEP’s in Table 4 (BRENEMAN and STONE, 1985) cover a wider range of elements and are quite accurate (generally ±10%). Following the authors, we list values corrected for a residual charge/mass (Q/M) fractionation; the correction is small for light elements but reaches +0.10 to +0.18 dex in the iron group (Sec. 7.1). The SEP values—even without this correction—and SW values generally agree within error limits with the spectroscopic values. We therefore took the SEP-SW mean for He, C, Ne and Ar, and SEP alone for the remaining elements as our best estimates for the outer layers of the Sun (“Corona, adopted” in Table 4). Differences between these values and photospheric ones (last column of Table 4) will be discussed in Sec. 7.1.

6. NOBLE GASES

6.1. He

Despite its high abundance and great atmospheric importance, helium is difficult to determine accurately. In the Sun, He does not appear in the photospheric spectrum, and therefore can be determined only from prominence spectra, solar wind, solar energetic particles, or models of the solar interior. Prominence spectra yield very uncertain results, as the relevant physical processes are not well understood. Values of Ne/Ne vary from 6.5 to 16% (HIRAYAMA, 1978; MUKIY, 1978; HIRSCHFELD and MUKIY, 1978). In the solar wind (BOCHSLER, 1987), helium is extremely variable, but generally Ne/Ne is rather low, ~4 ± 2%. A similar value is found for solar energetic particles (COOK et al., 1984; MCGUIRE et al., 1986). However, none of these results are reliable enough for our purposes, due to low accuracy (prominences) or possible fractionation (solar wind, SEP).

Giant planets are another source of He/H ratios, but at least Jupiter and Saturn (5.7 ± 1.3% and 1.6 ± 1.3%; CONRATH et al., 1984) seem to have been affected by fractionation. Only Uranus (9.2 ± 1.7%; CONRATH et al., 1987) agrees with the result derived below.

We shall therefore turn to extrasolar sources, such as HII regions or hot stars. Many results are available (SHAYER et al., 1983; WOLF and HEASLEY, 1985; PEIMBERT, 1986; PAGEL, 1987, 1988; MEYER, 1989) and indicate a rather uniform abundance for media with roughly solar metallicity, Ne/Ne ≈ 11 ± 11%. Values in the same range, 9.2 to 10.4%, come from recent standard solar models (CAKEH, 1986; TÜRCK-CHEÉZE et al., 1988; BAHCALL and ULRICH, 1988). We therefore adopt Ne/Ne = 9.75% (Y = 0.275), with an uncertainty of ±0.05% (9% ≤ Ne/Ne ≤ 10.5%; 0.26 ≤ Y ≤ 0.29).

6.2. Ne, Ar

Like He, C, N, O, these elements are fractionated relative to low FIP metals in the solar corona (Sec. 7.1). For this reason we shall again partly rely on local galactic values, i.e. for HII regions, HI gas, and stars, as reviewed by MEYER (1985a, 1989). As these data also agree very well with “photospheric” values derived from coronal spectroscopy, solar wind and SEP (corrected by a constant fractionation factor for all elements of Z > 2 with FIP > 11 eV), we have adopted the mean values: log Ne = 8.09, log Ar = 6.56 (Sec. 7.1). These values agree with a prominence measurement, which presumably refers to photospheric, not coronal material, as judged from the Mg/O ratio (WIDING et al., 1986). Moreover, the Ar value is only 3% smaller than the value obtained by interpolating Ar/Xe between Sr and Ba (CAMERON, 1973, 1982; AE). For Kr, the latest value based on s-process systematics (45 ± 8; H REIFR, priv. commun., 1987; see also WALTER et al., 1986) agrees well with the earlier estimate of 45.3 (AE) obtained by Cameron’s method (Kr was interpolated between Br and Rb, and Kr between Se and Xe). The Xe value was obtained by graphically fitting Xe to the Te-I-Cs-Ba peak, using both the even- and odd-A nuclides. The result, 4.7, agrees with an estimate of 5.0 ± 1.0 based on s-process systematics (BEER et al., 1983).

The corresponding elemental ratios may be compared with those of the solar wind and other estimates (Table 5). He/Ne/Xe is again high compared to the solar wind and SEP, apparently due to different depletions of He and Ne in the latter (Fig. 3; Sec. 7.1). The other ratios seem to have stabilized, although the individual abundances of all four noble gases have changed.

7. DISCUSSION

7.1. Photospheric vs. coronal abundances

It is well known that several different processes affect abundances in the solar corona (MEYER, 1985b; VAUCLAIR and MEYER, 1985; GEISS, 1985; BRENEMAN and STONE, 1983; GEISS and BOCHSLER, 1983; BOCHSLER, 1987 and references therein). There is clear evidence from abundance patterns that separation processes at relatively low temperature fractionate the gas supplied to the corona. Elements with high first ionization potentials (FIP), which are neutral at this temperature, are depleted relative to elements of lower FIP, which are ionized. Figure 3 shows this trend for data from Table 4, a ~4.5-fold drop in abundance occurs between 9.5 and 11 eV.

Thanks to the improvement in the data for CNO, some trends now appear with greater clarity than in previous versions of Fig. 3.

(1) The depletion is constant at ~0.65 dex (factor of 4.5) for CNO, and presumably for all heavy elements of FIP ≥ 11 eV. The trend confirms the “two-plateau pattern” for the atom-ion separation process suggested by COOK et al. (1979).

(2) H and He part company from the other elements. He lies ~0.20 dex below the high-FIP element plateau at ~0.65 dex, in SW as well as SEP. Hydrogen, which cannot be determined in SEP, lies slightly above this plateau in SW, but much higher, right on the low-FIP plateau, in the corona itself, according to spectroscopic data (Fig. 3). Similar characteristic deviations have been seen previously in galactic cosmic rays (MEYER, 1985b; GEISS and BOCHSLER, 1985). The reasons for this are not known, but these two elements are much lighter and more abundant than any of the others.

Correction for fractionation. It is not quite clear what correction is most appropriate for Q/M fractionation, as this
correction depends strongly on the adopted Fe abundance. BRENEMAN and STONE (1985) found that the SEP/photospheric abundance ratio for low-FIP elements—including Fe—fit a power-law in Q/M, and used this power-law as the correction factor, on the tacit assumption that these elements were not fractionated between photosphere and corona. An alternative, if extreme, approach would be to use no correction at all. The mean ratio log (SEP/photosphere) then becomes −0.61 dex (instead of −0.65) for high FIP elements and −0.01 ± 0.09 dex (instead of +0.07) for low FIP elements. In particular, the iron abundance then becomes 7.53 (close to the meteoritic value) instead of 7.65. Given these uncertainties in the Q/M fractionation correction, the SEP data cannot be used to resolve the discrepancy between photospheric and meteoritic iron abundance.

Gamma-ray spectroscopy of flares has provided a new technique for determining solar abundances, probably at chromospheric level (MURPHY et al., 1985). Recent results (REAMES et al., 1988) show that if the ratios Mg/O, Si/O, and Fe/O agree with SEP values, then Ne/O is about 3X larger and even C/O may be larger. These results are very puzzling.

Mechanism and site of separation process. If FIP is the relevant physical parameter, then the fractionation must take place in low-T, i.e., chromospheric-type, material (T ≈ 10⁶ K) consisting of neutral and singly ionized atoms (MEYER, 1985b). Most likely, neutrals somehow diffuse away from the gas and enter the corona, whereas ions are prevented from doing so by the magnetic field. Two mechanisms based on this idea have been investigated thus far. VAUCLAIR and MEYER (1985) proposed gravitational settling of heavy neutrals in the ~6500 K temperature plateau of the middle chromosphere, with FIP as the key parameter. Others (e.g., GEISS, 1985) have considered diffusive loss of neutrals during the fast rise of matter from chromosphere to corona in spicule-like features that are rapidly heated; here the relevant parameter is the first ionization time (FIT), which is actually closely related to FIP.

Both mechanisms are very slow (days, for realistic parameters), compared both to turbulent mixing times in the chromosphere and to spicule lifetimes (5 min). A reliable value for the coronal abundance of H would provide strong constraints on these mechanisms.

Neon and Argon. We can derive photospheric abundances of these elements from the rather accurate SEP and solar-wind data, by adding the correction factor of 0.65 dex to the coronal values. We thus find ANe = 8.11 ± 0.10 and ANe = 6.54 ± 0.10: very close to the local galactic values of 8.07 ± 0.18 and 6.58 ± 0.18 derived from HI regions, HI gas, and stars (MEYER, 1985a, 1988). [A new analysis by MEYER (1989)] again gives very similar coronal and local galactic values: ANe = 8.08 ± 0.06 and 8.14 ± 0.10: ANe = 6.55 ± 0.08 and 6.63 ± 0.20.] This agreement is not likely to be fortuitous, and thus seems to support the underlying data: SEP and solar-wind abundances, a constant coronal fractionation factor for all heavy elements with FIP > 11 eV, and the astronomical measurements used for the local galactic estimates. We shall therefore adopt for the solar system the means of the solar and local galactic values, with an estimated uncertainty of ±25%; ANe = 8.05 ± 0.10 and ANe = 6.56 ± 0.10.

7.2. Meteoritic vs. solar abundances

Gross trends. The log of the abundance ratio Sun/meteorites (Table 2) is plotted in Fig. 4, with the elements grouped according to cosmochemical character. Elements that are poorly determined in the Sun are represented by open symbols.

On the whole, the agreement is remarkably good. Past discrepancies have gone away as the solar values—especially thanks to improved transition probabilities and other atomic data—have become more accurate. Even now, the agreement improves if we delete the less accurate values. The mean Sun-meteorite difference for all elements from Table 2 (except the very uncertain Ag, Tb, Ho, Lu, Tl and the grossly dis-

![Fig. 3. Abundances of solar energetic particles (SEP) relative to the solar photosphere (Table 4). Elements K to Zn, of first ionization potential (FIP) < 10 eV, are present in normal abundance relative to Si, but elements C to Ne, of higher FIP, are depleted by an approximately constant factor. Apparently these elements are depleted in the corona by a process depending on FIP (or first ionization time, FIT). The points for P and S would fall closer to the dashed trend line if they were referenced to meteoritic rather than photospheric abundances. As H cannot be reliably determined in SEP, we plotted representative spectroscopic and solar-wind data from Table 4.](image-url)
Germanium. Grevesse and Meyer (1985) have suggested that the discrepancy for this element (and lead, below) could be real, implying chemical enrichment in C1 chondrites. Indeed, Ge is known to be depleted in all other chondrite classes—by factors up to 0.15X—but so are 13 other elements of similar volatility (Fig. 4), apparently reflecting volatile loss during chondrule formation (Larimer and Anders, 1967). Germanium appears to have no unique property that would allow it to go its own ways, unaccompanied by other elements of similar volatility. It is siderophile as well as volatile, but so are, to only slightly lesser degrees, Ag, Cu, Sb, Sn, etc. (Wai and Wasson, 1977).

Lead. At first sight it seems that a suitable enrichment process for Pb is available. The highly volatile (<600 K) elements, to which Pb belongs, show much larger variations in abundance, including—in contrast to the 1300–600 K group—occasional “superenrichments” above C1 chondrite levels, though only in ordinary, not carbonaceous chondrites. Some authors suggest that these volatiles were left behind in the nebula by earlier generations of meteorites and condensed on the last traces of dust after temperatures had dropped (Higuchi et al., 1977). Others believe that the volatiles sublimed from the inner part of the meteorite parent bodies and condensed in the cooler, outer regions (Binz et al., 1976). In the cases studied, Pb usually is accompanied by other elements of similar volatility (Cd, In, Bi, 11), but in highly variable proportions (Higuchi et al., 1977), with Pb and Bi occasionally predominating (Keays et al., 1971; Tilton, 1973).

However, it is very unlikely that such “superenrichment” can explain the high Pb abundance. This process is not specific for Pb, it has never been seen in C-chondrites, and it produces enrichments that are highly variable on a mm or cm scale—in contrast to the observed uniformity of the Pb distribution within meteorites (σ for Orgueil is ±8%, Table 1) or between meteorites (Orgueil and Ivuna agree within ±17%, according to Burnett et al., 1988). Moreover, 12 C chondrites—including Orgueil—analyzed by spark-source mass spectrometry/isotope dilution (K3) show a perfectly normal abundance trend for volatiles: Cl/C2/C3 N 1.00/0.50/0.25–0.30. Apparently none of these meteorites, including Orgueil, has been affected by superenrichment.

Tungsten. The discrepancy is large (+0.43 dex), but the fault may well be with the solar data (Holweger and Wörner, 1982). Although the transition probabilities are very accurate, the two ostensibly WI lines are very faint and perturbed, and may not even be due to WI. Alternatively, the ionization energy of W may be too low by 0.43 eV.

Iron and Manganese. The discrepancies for these two ele-

Table 6. Mean Abundance Ratios, Photosphere/Meteorites

<table>
<thead>
<tr>
<th>Elements</th>
<th>N</th>
<th>log Phot./Cl</th>
<th>ΔA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refractories</td>
<td>23</td>
<td>0.002 ±0.04</td>
<td>-0.025 ±0.15</td>
</tr>
<tr>
<td>Silicate</td>
<td>2</td>
<td>0.000 ±0.00</td>
<td>-0.007 ±0.013</td>
</tr>
<tr>
<td>Siderophiles</td>
<td>4</td>
<td>-0.003 ±0.01</td>
<td>-0.054 ±0.081</td>
</tr>
<tr>
<td>Volatiles, 1300-600K</td>
<td>5</td>
<td>-0.022 ±0.04</td>
<td>-0.096 ±0.15</td>
</tr>
<tr>
<td>Volatiles, <600K</td>
<td>3</td>
<td>0.013 ±0.08</td>
<td>0.059 ±0.14</td>
</tr>
</tbody>
</table>

*We omitted Li, Be, Mn, Fe, 1s, W, and Pb (Sec. 7.2) and—except for the <600 K volatiles—the elements poorly determined in the photosphere (open symbols in Fig. 4). However, the means for each group remain close to zero even when the poorly-determined elements are retained.
ments (+0.16 and −0.14 dex, i.e. 40–50%) are puzzling, as both elements appear to be well-determined in the solar photosphere. Although the solar data for Fe have not yet fully converged, and need to be confirmed by measurement of the dominant species, Fe II (Sec. 4.3), most results are higher than the meteoritic value. It would be surprising if this discrepancy were resolved merely by improved atomic data or a better understanding of physical processes in the photosphere (HOLWEGER, 1988).

Perhaps the meteoritic abundance of Fe is at fault. The most obvious way to fractionate Fe—as nickel-iron—is not feasible, as it would simultaneously deplete other siderophiles. There are two lines of evidence against such depletion. (1) The most abundant, well-determined siderophiles—Co and Ni—are not depleted in Cl chondrites relative to the Sun (Table 2, Fig. 4). (2) There is no systematic break in the abundances of odd-A nuclei between A = 99 and 111 (Fig. 5), where cosmochemical character changes rapidly: Ru, Rh (refractory siderophiles), Pd (normal siderophile), Ag (moderately volatile siderophile) and Cd (highly volatile). Even a 10 to 20% increase, let alone a 50% increase, in the abundances of Ru, Rh, Pd relative to Ag, Cd would cause a marked offset in the curve.

However, a more selective fractionation process of Fe alone is available, at least in principle. Below 400 K in a solar gas, the stable chemical form of Fe is magnetite, Fe₃O₄, which would therefore be the principal condensate of Fe in an interstellar cloud that remained at ≤400 K throughout contraction. On crystal chemical grounds, most other siderophiles should not be enriched in magnetite, and this has actually been confirmed for meteoritic magnetite from Cl chondrites (KRAHENBÜHL et al., 1973; KERRIDGE et al., 1979). Once formed, magnetite could fractionate from other solids on the basis of its ferromagnetism. Moreover, there is evidence for Fe/Si fractionations in meteorites and planets (LARIMER and ANDERS, 1970; MORGAN and ANDERS, 1980).

It is not certain, however, that the pure Fe₃O₄ grains required by this mechanism were available. Although Fe is strongly depleted in the interstellar gas (SALPETER, 1977; PHILLIPS et al., 1982), so are many other elements (Ni, Mg, Si, etc.), and it is not clear that the major part of Fe is contained in discrete magnetite grains rather than in mixed, perhaps amorphous, grains.

For Mn, no similarly selective chemistry is available. It is one of the least volatile of the 15 moderately volatile (1300–600 K) elements (Fig. 4), and if it is enriched in Cl chondrites, at least some of the other elements should be also. If we take the solar data at face value, then only Ge appears to be so enriched, but since several of these elements are poorly determined in the Sun, it may be possible to devise an ad hoc mechanism for enriching Mn, Ge, and a few other elements that is consistent with the data and is cosmochemically tenable.

7.3. Cl chondrites as abundance standards

There are three major reasons why Cl chondrites are used as the abundance standard: 1) they seem to have escaped the fractionation processes (e.g. chondrule formation) that affected other meteorite classes (ANDERS, 1971), 2) their volatile element abundances are higher and match solar ratios for Na/Ca, S/Ca, Si/Ca (HOLWEGER, 1977); 3) they give the smoothest nuclidic abundance curve (SUSS, 1947; ANDERS, 1971). Nonetheless, even the best may not be good enough, and one must therefore periodically reexamine Cl's for evidence of modification or alteration. We shall summarize and update the discussion in AE.

High-temperature minerals. Orgueil contains ~1% of olivine and orthopyroxene, either indigenous or accreted on the regolith of the parent body. This component has only a negligible effect on the overall composition. Some few Orgueil samples are enriched in refractories, suggesting sporadic (regolith?) contamination with Ca, Al-rich inclusions, but since we have rejected all such anomalous analyses, they do not affect the abundance table.

Presolar matter. Several types of interstellar matter have been identified in C-chondrites: diamond, SiC, organic matter, in abundances of a few to a few hundred ppm. As these exotic components account for <10⁻² of the total C and Si, they have only a negligible effect on overall abundances. The apatite mentioned by AE turned out to be local rather than exotic.

Hydrothermal alteration. C1 chondrites have been altered by liquid water in their parent bodies, but for most water-soluble elements there has been no net change, suggesting that the alteration took place in a closed system. The principal exceptions are Br and I, where abundances had to be estimated from other meteorite classes (AE). Large variations have been found for C2 chondrites, where in addition Na, K, and Ca have been affected (KI).

Interelement ratios: differences between Cl's and other meteorite classes. In contrast to volatiles, refractory elements usually have essentially constant ratios in all chondrite (and even some achondrite) classes. Some authors (e.g. JOCHUM et al., 1986) have assumed that this constancy is exact for all refractory lithophile except V (KI), so that mean ratios for all C chondrites can be used to refine ratios for Cl chondrites. AE pointed out two apparent exceptions to this constancy: the Zr/Hf and Re/Ir ratios of C2 chondrites were ~14% higher than those of Cl's. However, these differences have not stood up in the light of new data or reevaluation of older data. The Zr/Hf ratio of C1's now is within the range for other classes (U3; Sec. 3.4, 3.6). The variations in Re/Ir and Re/Es ratios seem to reflect mainly differences among laboratories or analysts, not meteorite classes.

Thus at present there is no direct evidence for interelement fractionation of refractories, within the accuracy of the data. However, there are some disturbing inconsistencies. KALLEMEYN and WASSON (1981) have shown that the (Mg-normalized) abundances of eight refractory lithophiles (Al, Sc, Ca, Lu, Y, Eu, Sm, La) vary systematically among C-chondrite classes: C1/C2/C3O/C3V = 1.00/1.11/1.33. Since the Mg/Si ratios are constant in the first three classes and only 3% higher in C3V's, one would expect element/Si ratios for all refractory lithophiles to vary from class to class by the above factors. But JOCHUM et al. (1986) confirmed this trend only for Sc; for Nb, Y, and Ho they found no enrichment in C3's, slight enrichment in C3V's, and large enrichments in a C3O. KNAB (1981) found essentially constant Zr/Si ratios in all C chondrite classes.

Evidently at least some of these data must be wrong. If all refractory lithophiles are fractionated by the Kallemeyn-Wasson factors, then their Si-normalized abundances should vary correspondingly from class to class. Conversely, if these
abundances do not vary for some elements (e.g., Zr), then the
terelement ratios of refractory lithophiles cannot be con-
stant. Obviously, these contradictions will have to be resolved
by further measurements; until then, it seems advisable not
to use data from other meteorite classes if at all possible.

7.4. Smoothness of abundance curve

A major milestone in this field was SUSS' (1947) postulate
that the abundances of nuclides—especially of odd \(A\)—are a
smooth function of mass number. The slope of the abundance
curve is accurately defined over short segments by isotopic
pairs, and on the basis of the above postulate, SUSS adjusted
elemental abundances as needed to produce a continuous,
smooth curve.

Suess' adjustments (by factors of up to 100, e.g., Re) were
vindicated by subsequent measurements, and in view of this
success, his postulate later became one of the main reasons
for choosing Cl chondrites as the abundance standard; they
gave the smoothest curve.

However, now that most Cl chondrite abundances are
known to better than 10%, the smoothness of the abundance
curve can be tested to higher accuracy. Deviations may imply
either chemical fractionations of Cl chondrites, or failure of
Suess' postulate at the \(\sim 10%\) level.

This question was reexamined by \(AE\), who claimed
smoothness of \(\leq 10%\) overall, but with irregularities at Pd
Ag-Cd and Nd-Sm-Eu, which they attributed to analytical
to chemical fractionations. BURNETT et al. (1988) ap-
proached the problem experimentally, analyzing by a single
technique the elements Ni through Ru as well as Fe and Pb
in six samples of two Cl chondrites. They concluded that the
abundance curve is smooth within 4 to 10% between \(A = 60\)
and \(A = 101\), but not necessarily at higher mass numbers.
Figures 5 and 6 show our new data for the mass regions 67–
139 and 135–209.

The low-mass region (Fig. 5) seems generally smooth,
though the steep slopes and varied topography would mask
small irregularities. The most sensitive test is provided by
the Pd-Ag-Cd region, where the flat trend and contiguity of
two isotopic pairs help bring out small irregularities. The Ag-
Cd irregularity noted by \(AE\) has smoothed out somewhat due
to the revision in the Ag abundance, and would require only
a further 7% drop in Ag/Cd ratio for perfect continuity. Such
a change exceeds the combined error of the two means
(\(\pm 1.8%\)), but since the Ag value is based on only 6 analyses
from a single laboratory, a larger systematic error cannot be
excluded.

The high-mass region (Fig. 6) is more suitable for a test,
as it is flatter, has many more isotopic pairs, and contains
mainly refractory elements, which do not readily fractionate
from each other in cosmochemical processes. The REE are
of particular interest, since they are chemically coherent and
analytically very well determined (Sec. 3.6, Table 1).

The most sensitive test is the Nd-Sm-Eu-Gd region, where
four isotopic pairs occur in sequence and thus provide four
well-defined curve segments. Yet the new data, despite their
high accuracy, still fail to give elemental trends agreeing with
the isotopic trends: Sm looks too low and Eu looks too high.
\(AE\) ruled out analytical error, and discussed various chemical
or nuclear causes for this irregularity. The chemical expla-
nations, involving some special process for Cl chondrites,
now look less plausible, as our new REE abundances, based
on DAVIS (1988, in preparation), are quite similar to REE
patterns in other meteorite classes. Apparently the smoothness
postulate breaks down below the 10 to 20% level, due to
nuclear causes. This is not quite surprising, since most nu-
clides in this mass region are made by both the s- and r-
processes, and even if the distributions of pure s- or r-process
nuclei were perfectly smooth, their mixture need not be. The
nuclear parameters determining s- and r-process yields are
not perfectly smooth functions of mass number, and thus

Fig. 5. Abundances of odd-mass nuclides from Zn to La are a smooth function of mass number, with elemental
abundances conforming to the trend set by the isotopic ratios (tie lines). Peaks at Y, Sn, and Fe-Cs correspond to
closed neutron or proton shells of the nuclides themselves or their neutron-rich, shortlived progenitors in the r-process.
There is no evidence for fractionation of cosmochemical groups from each other, as there are no distinct offsets at
junctions where cosmochemical character changes (Ge-As-Se or Rh-Pd-Ag). The only exception is a 7% offset between
Ag and Cd.
Abundances of the elements

the smoothness postulate is bound to fail eventually. Nonetheless, this principle, which has successfully guided the field for 40 years, should be retired with proper honors, now that it has reached its limits of applicability.

7.5. Nucleosynthesis: Contributions of s and r-processes

Most heavy nuclides are made by both the s- and r-processes, but the contributions of these processes can be resolved by first assessing the s-process component (Käppeler et al., 1982 and references therein). The abundance N_s of a pure s-process nuclide is inversely proportional to the neutron capture cross section σ and directly proportional to the neutron fluence (Clayton et al., 1961). Thus a plot of σN_s vs A indicates the fluence as a function of A, permitting reconstruction of s-process conditions in some detail. Progress in this field has required both better abundances and better cross

![Diagram](image1)

FIG. 6. The trend from Ba to Bi is likewise smooth, except that Sm is too low relative to Nd and Eu. As analytical and cosmochemical causes are ruled out (see text), it appears that the abundance curve is smooth only down to the $\sim 20\%$ level.

![Diagram](image2)

FIG. 7. (Beer, 1988, priv. commun.). In the s-process, abundance N and neutron capture cross-section σ are inversely proportional to each other and thus a plot of σN for s-process nuclides is a function mainly of neutron exposure (Käppeler et al., 1982). A computer fit to the s-only points (filled symbols) accounts for the region 90–205, but underproduces Pb206 and light nuclides of $A < 90$. Two additional s-processes, at higher and lower fluences, are needed to account for these two regions. See text for additional discussion.

![Diagram](image3)

FIG. 8. (Beer, 1988, priv. commun.). To obtain the r-process component of nuclides of mixed parentage, the s-process component from Fig. 7 is subtracted from the total abundances. These "r-process residuals" (open symbols) form a smooth curve passing through the "r-only" nuclides (filled symbols), suggesting that the input data (abundances and cross sections) are reasonably accurate. The peaks at $A \approx 130$ and ≈ 195 represent the enhanced abundances of short-lived, neutron-rich progenitors with closed, 82- or 126-neutron shells.
sections, of which the latter were contributed mainly by the Karlsruhe group (Beer, 1986; Kappeler, 1986; Bao and Kappeler, 1987).

Figure 7 shows a sN_t plot, based on the abundances from Table 3 (Beer, 1988, priv. commun.). The filled symbols are s-only nuclides used for normalization of the curve in the mass range $90 < A < 205$. The open symbols represent either "mainly-s" nuclides or s-only nuclides that are situated in branchings (e.g. Gd151), belong to interpolated elements (Kr, Xe, Hg), or were used to normalize the curve below $A = 90$. A computer fit to the s-only points accounts for the mass and low fluences ("strong" and "weak" processes) are needed (Bee, 1986). The line splits at branch points where neutron capture competes with β-decay; the top and bottom curves represent the individual branches of the synthesis path.

From the sN curve, the s-process components of mixed, $r + s$, nuclides can be calculated, provided their s's are known. Subtraction of these s-components then leaves the r-components. These (open symbols) along with pure r-nuclides (filled symbols) are plotted in Fig. 8. The curve is rather smooth over most of its range, except below $A = 90$ where the s-process begins to contribute. As subtraction of similarly-sized numbers usually inflates errors, the smoothness of the curve suggests that the input data (abundances and cross sections) are reasonably accurate.

A caveat to be noted is that the above conclusions were obtained within the framework of the "classical" s- and r-processes. The actual processes may be different and more complex (Cameron, 1988, priv. commun.).

7.6. Comet Halley

Now that the Vega and Giotto missions have obtained data from Comet Halley, it is interesting to compare these data with the new photospheric and meteoritic abundances (Table 7). The most extensive data, from the PUMA-1 mass spectrometer (Jessberger et al., 1988), are for the dust component only, and we have therefore added the HCNO abundances for the gas component, using the gas/dust ratios of Delsemme (1988). These data are compared with photospheric abundances in Fig. 9.

The depletion of H is very large, and obviously reflects the non-condensation of molecular hydrogen. C, N, and O, on the other hand, agree remarkably well with solar values. Even N_2 no longer shows the depletion reported in earlier studies (Geiss, 1987), but since the N_2 value critically depends on the gas/dust ratio and the composition of the gas, it cannot be regarded as definitive. As N_2 is the most volatile of the principal molecules in comets, it is a potentially valuable indicator of the formation temperature and subsequent thermal history of the comet (Yamamoto, 1985).

Of the remaining elements, two disagree by more than 2σ: Si = –0.30 dex, Fe = –0.37 dex. Sulfur is a trifle below 2σ, at +0.23 dex. Relative to meteorites the Si and Fe discrepancies are smaller (±0.17 and ±0.21 dex), but are still outside the quoted errors. Since these discrepancies have opposite signs, they cannot be eliminated by changing the normalization from Mg to Si or some other element. (Indeed, one argument for the Mg normalization is that it gives a mean residual close to zero, i.e. 0.01 ± 0.20 for the 13 elements from Na to Ni.)

To first order, the Halley data suggest that Fe/Mg and Mg/Si both decline with distance from the Sun (Hölsweger, 1988). However, when additional data for meteorites and the Earth are included, the two sequences are quite different, and thus cannot represent a simple monotonic decline with distance. Note in particular the varying positions of EH and EL chondrites. Fe/Mg: Sun > Earth > EH > C ≈ H > EL > L > LL > Halley. Mg/Si: Earth > Sun ≈ C > H > L ≈ LL > EL > EH > Halley. At best one of these sequences is a simple function of distance, and perhaps neither of them is. We therefore limit ourselves to the following tentative conclusions.

(1) Relative to Mg, Comet Halley seems to possess its cosmic complement of C, O, and perhaps even N, i.e. the "ice" component (Geiss, 1987).
(2) Halley has the lowest known Fe/Si and Mg/Si ratios of any object in the solar system (except for the Moon), farthest from the solar ratios (JESSBERGER et al., 1988). If these data are correct, then Halley cannot be pristine interstellar matter. Apparently at least its dust component was affected by the chemical processes that fractionated these elements elsewhere in the solar system (ANDERS, 1986).

Acknowledgements—We thank Janice Butz for skilful preparation of the manuscript, undaunted by the logistic complexities of this transatlantic collaboration. J. P. Meyer provided countless constructive suggestions that greatly improved the paper. We also thank the following colleagues for formal or informal reviews: L. H. Aller, H. Beer, A. G. W. Cameron, J. R. de Laeter, J. Geiss, D. Hartmann, R. D. Hoffman, U. Krähenbühl, H. Palme, E. C. Stone, and D. S. Woolum. We are indebted to C. J. Waddington for Figures 1 and 2, and H. Beer for Figures 7 and 8. This work was supported in part by NASA Grant NAG 9-52.

Editorial handling: H. Palme

REFERENCES

HOLDEN N. E. (1985c) Total and spontaneous fission half-lives for uranium and plutonium nuclides. Report BNL-NCS-36961.

Abundances of the elements 213

R2 Ramme J. E. W. and Ramme J. E. H. (1982) Metal-silicate extrac-